
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??–??, 1993
c© 1993 Kluwer Academic Publishers – Manufactured in The Netherlands

A Practical Approach to Type Inference for EuLisp

ANDREAS KIND∗ (andreas.kind@isst.fhg.de)

HORST FRIEDRICH (horst.friedrich@isst.fhg.de)

Fraunhofer Institute for Software Engineering and Systems Engineering (ISST),
Kurstrasse 33, 10117 Berlin, Germany

Keywords: Type Inference, Lisp, Compilation, Unification.

Abstract. Lisp applications need to show a reasonable cost-benefit relationship be-
tween the offered expressiveness and their demand for storage and run-time. Drawbacks
in efficiency, apparent in Lisp as a dynamically typed programming language, can be
avoided by optimizations. Statically inferred type information can be decisive for the
success of these optimizations.

This paper describes a practical approach to type inference realized in a module and
application compiler for EuLisp. The approach is partly related to Milner-style poly-
morphic type inference, but differs by describing functions with generic type schemes.
Dependencies between argument and result types can be expressed more precisely by us-
ing generic type schemes of several lines than by using the common one-line type schemes.
Generic type schemes contain types of a refined complementary lattice and bounded type
variables. Besides standard and defined types so-called strategic types (e.g. singleton,
zero, number-list) are combined into the type lattice. Local, global and control flow in-
ference using generic type schemes with refined types generate precise typings of defined
functions. Due to module compilation, inferred type schemes of exported functions can
be stored in export interfaces, so they may be reused when imported elsewhere.

1. Introduction

Static type checking makes use of the declarative information available in
a program. On the one hand, programming languages with required type
declarations have advantages over declaration-free languages:

• during compile-time all type inconsistencies can be uncovered,

• compilers are able to create more efficient code by doing optimiza-
tions,

∗This work was supported by the German Federal Ministry for Research and Tech-
nology (BMFT) within the joint project APPLY. The partners in this project are the
Christian Albrechts University Kiel, the Fraunhofer Institute for Software Engineering
and Systems Engineering (ISST), the German National Research Centre for Computer
Science (GMD), and VW-GEDAS.



2 KIND, FRIEDRICH

• static type information can be used to improve storage management,

• enhanced program documentation is achieved.

On the other hand, required declarations lead to a loss in flexibility and ex-
pressiveness, because program structures are difficult to reuse and extend—
depending on the limitations and flexibility of the type scheme.

Lisp as a dynamically typed programming language offers flexibility and
expressiveness. This quality comes with potentially expensive run-time
type checking, much of which is unnecessary. The polymorphism of a func-
tion may be limited in the context of another function. For example, +
is generally defined on all number types. Consider a call to + where both
arguments are the results of a function that computes the length of lists,
then the result of + can be inferred to be a positive integer.

Steenkiste and Hennessy [13] point out that type computations for Lisp
applications increase the execution time by 25%, on average. For individual
applications this value may lie between 6% and 88%. The checking of list
operators, in particular, can constitute a major part of the execution time.
These drawbacks in efficiency, apparent in Lisp as a dynamically typed
programming language, can be reduced by using suitable approaches to
type inference without sacrificing Lisp’s flexibility and expressiveness.

The results presented here were obtained as part of the APPLY project.
The aim of the project is to develop a modern and practical Lisp system [3].
Efficiency and integration can only be reached in line with corresponding
demands on language. These include the following features, that are com-
plied with by the Lisp dialect EuLisp [11].

• separately compiled modules,

• clear separation between compile-time and run-time,

• far-reaching static analysis,

• separation of language from development environment.

Hence, we decided to build a module and application compiler for Eu-

Lispİn order to achieve compiled modules and applications with efficient
run-time behaviour a practicable type inference system is integrated in the
compiler. The advantages of static type inference are:

• reduction of dynamic type checks,

• increased use of machine data types instead of program data types,



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 3

• greater chances for further optimizations (e.g. inlining, dead code
elimination).

The combination of EuLisp and generic type schemes with refined types
allows us to improve on previous work on type inference for Common-

Lisp. TICL a type inference system developed by Ma and Kessler [8]
generally achieves 20% speed improvement. However, reanalysis slows the
inference process when recursive functions must be handled, or when a
defined function is analysed before those functions that use it are analysed.

A type inference approach proposed by Baker [1] inspired us to use refined
types. But the need to use the costly Kaplan/Ullman fixed-point algorithm
makes this approach less attractive. Neither TICL nor Baker’s approach
handle the notion of typed lists.

A global tagging optimization for Scheme, proposed by Henglein [5],
eliminates 60–95% of tag handling operations in non-numerical code by
compile-time inference. This approach to type inference does not concern
itself with refined types or module compilation.

2. General Approaches to Type Inference

The general approaches to data type inference depend on the type dis-
cipline of the programming language in question. Lexical monomorphic
languages (e.g., Pascal) enable the direct derivation of types for all ex-
pressions. Types have to be explicitly assigned to all constants, variables
and functions. A simple recursive algorithm can then be used to determine
the type of an expression from the types of its subexpressions.

Programming languages with polymorphic type disciplines allow the in-
troduction of type variables into type expressions in order to achieve greater
flexibility. The types of expressions can be derived statically in these lan-
guages from:

• available type declarations,

• type descriptions of the standard functions,

• contextual type information.

There are two main approaches to static type inference: Milner-style unifi-
cation and Kaplan/Ullman fixed-point iteration. We discuss each of these
in turn.



4 KIND, FRIEDRICH

2.1. Milner-Style Unification

Due to the type discipline of ML [10, 4] a static typing of polymorphic
functions is possible. This approach to type inference tries to relate the
types of all language expressions to each other via type variables. The
relations of program structures are reflected in equations of type expressions
which, as suggested by Milner [9], can be resolved by unification [12]. Full
static typing is achievable by the constraints on the ML type discipline:
variables and structure components are each limited to single types (no
side-effects of types) and explicit type declarations are sometimes required.

2.2. Kaplan/Ullman Fixed-Point Iteration

The second approach to static inference of data types is attributable to
a proposal by Jones and Muchnick [6]. Kaplan and Ullman [7] refined this
idea to obtain more exact type information for given program statements.

In the approach suggested by Kaplan and Ullman, programs are mod-
elled as directed graphs, with nodes representing assignments and edges
representing direct control flow relations between assignments. The pos-
sible links between program variables (x1, · · · , xk, y) are considered before
and after the execution of an assignment (Q).

· · ·
↓

Q : y ← op(x1, · · · , xk)

↓
· · ·

Forward and backward analyses are iterated over the program nodes to
determine as precise a type as possible for each program variable. Forward
analysis infers type information after execution of an assignment from type
information on program variables available before the execution of assign-
ment. For example, this may imply that the result type is inferred from
argument types of a function application. Backward analysis makes infer-
ences against the direction of control flow. Type information on program
variables before execution of an assignment is inferred from information
available after execution of an assignment due to applications of functions
whose possible argument and result types are known.

For forward and backward analyses, type descriptions of the standard
functions are used together with a type lattice adapted to the type system
of the programming language. Type descriptions of standard functions are
realized in the Kaplan/Ullman approach as so-called T-functions, where
argument types are associated with the corresponding result types, and
combinations of argument and result types are associated with the types
of selected arguments. In order to determine sharp type information on



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 5

program expressions a fixed-point algorithm is applied. Alternating forward
and backward analyses are applied until no further refinement is obtained.
The result of the forward analysis is used as upper bound for the backward
analysis, and vice versa on successive iterations.

3. Characteristics of the new Approach

As an integral part of the compiler, the type inference system receives as in-
put the source modules processed into an annotated abstract syntax graph
together with type information about the imports. The type inference sys-
tem adds inferred type information to the abstract syntax graph and gen-
erates type descriptions for export. Figure 1 illustrates the organization of
the type inference system.

Type Inference
System

�
�

�

❅❅
❅❅

�
�

�❍❍❍��
❅❅
❅❅

❅❅✟✟✟❆
❆
❆

�
�

�

❅❅
❅❅

✲

✲

❄

✲

✲

✻

type schemes of standard
functions and constants

type lattice

syntax graph
annotated abstract

import
type schemes

export
type schemes

syntax graph
annotated abstract

Figure 1: Type inference as integral part of the compiler

The approach follows that of Beer [2] in doing practical type inference
by separating the realistic inferences from the unrealistic ones. This is the
reason why for recursive functions we do not attempt to achieve as precise
types as possible such as by use of Kaplan/Ullman fixed-point iteration.

Milner-style unification cannot be used for languages with side-effects on
types [8]. Unlike ML, EuLisp provides polymorphic reference types (i.e.
values of different types can be assigned to structure components) and has
no need of lexical typing declarations. Nevertheless, the approach presented



6 KIND, FRIEDRICH

here uses a modified unification algorithm to infer type schemes for defined
functions without the need for expensive iterative analysis. In order not
to give up the optimization of list operations, we distinguish monomorphic
lists from polymorphic lists. Inference can be extended to the elements of
monomorphic lists, but no other higher order data types are supported.

The following features characterize our approach:

refined type lattice: The success of type inference depends critically on
getting sharp type information from standard functions and con-
stants. That is why the refined lattice type contains more than just
the standard and defined types. Refined types allow us to describe
standard functions and constants more precisely. The type lattice
is complementary, i.e. besides the lattice operations of union and
intersection the complement of each lattice type is also defined.

generic type schemes: To describe the potential argument and result
types of polymorphic functions, generic type schemes are used. The
schemes contain lattice types and bounded type variables. Generic
type schemes of standard functions are predefined; for defined func-
tions they are inferred by a modified unification algorithm.

bounded type variables: Dependencies between argument types and re-
sult types are expressed in type schemes with type variables. The
values that may be assigned to a type variable can be limited to a
subset of all lattice types.

singleton types: The type lattice allows us to handle types with only
one value (singleton types) specially. By means of singleton types,
equality predicates, in particular, can be described more precisely.

control flow inference: Generic type schemes assist with control flow in-
ferencing. Particular lines of the type scheme are assigned to each
program branch at if or cond.

global inference: The language design of EuLisp assists in the problem
of inferring global type information by providing encapsulation with
modules1. Type information of functions, variables and constants is
associated with definite parts of a program determined by the im-
port and export interfaces. This reduces the computational cost of
statically inferring global type information. For example, knowing all
calls to a defined function enables us to infer the type scheme of the
function. This global inference can be finalized with the analysis of

1Although we note that objects can also escape from modules by means of the class
hierarchy and, in particular, methods on generic functions defined elsewhere.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 7

the module, if the function is not named in the export interface. In
this case, there can be no calls from outside the module, so that it
is generally not necessary to keep track of all function calls over the
entire application.

persistent type information: Compilation of EuLisp means the com-
pilation of individual EuLisp modules by using import and export
interfaces of already compiled modules. In order to reuse inferred
type information of a compiled module, type descriptions of exported
functions, variables and constants are added to the export interface.

3.1. The Type Lattice

This type inference approach makes use of a complementary lattice:
L := (T,⊔,⊓, )

with a non-empty set of types T and operations ⊔ and ⊓. The operations
are commutative, associative and satisfy

τ1 ⊔ (τ1 ⊓ τ2) = τ1 and τ1 ⊓ (τ1 ⊔ τ2) = τ1 for τ1, τ2 ∈ T .

The lattice is complementary, meaning that for every τ ∈ T there is at least
one complement type τ ∈ T . The set of types can be divided into subsets:

T := Standard-Type ∪ Defined-Type ∪ Strategic-Type.
Standard-Type := {<object>, <character>, <null>, <number>, · · ·}.
Defined-Type := defined EuLisp structures and classes.
Strategic-Type := {singleton, zero, one, list, sy-list, fpi-list, · · ·}.

The lattice types ⊔τi and ⊓τi for all lattice types τi are designated ⊤ and
⊥, respectively. Instead of formally defining an order relation on all lattice
types, we use Figures 2 and 3 to illustrate the lattice structure.

All primitive types handled inside a module can be determined at the
start of the inference. Together with all types which can be constructed
by the lattice operations they form a finite set L of lattice types. The
type lattice thus has a finite number of elements. Bit codes are assigned
to every element in order to implement the operations ⊔, ⊓ and as fast
low-level bit operations (and, ior, xor). Expensive traversal of the lattice
to compute union, intersection and complements of lattice types can thus
be avoided.

3.2. Generic Type Schemes

Following Milner’s theory of type polymorphism [9] type variables (α) are
used to express constraints between argument types or between argument
types and the result type of a function. In general, type variables stand for



8 KIND, FRIEDRICH

❅
❅
❅
❅
❅
❅

❅❅��

❅
❅
❅
❅

��

⊤

⊥

· · ·

<integer> · · ·

<number>

fpi-not-zero

<fixed-precision-integer>

<null>

singleton

fpi-zero

zero

<object>

list

Figure 2: Standard and strategic types as part of the type lattice (a)

any lattice type, but they can be restricted to a subset of them, which is
denoted by writing the upper bound type as a superscript. For example,
the type variable α<number> denotes all <number> types. This restriction
of a type variable can be interpreted as if the variable was bound to the
specified type.

ατ may thus be written as α = τ with τ ∈ L

Although the notion of equations is more common in connection with uni-
fication, superscripts are used to provide more readable type descriptions.

To track the full polymorphic capacity of functions and constants, the
commonly used one-line type schemes are extended to generic type schemes:

δarg11 × · · · × δarg1k → δresult1
...

...
...

...
δargn1

× · · · × δargnk
→ δresultn

A generic type scheme contains n ≥ 1 lines each with fresh copies of type
variables and δ := τ | ατ , τ ∈ L. By using these generic type schemes with



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 9

❅
❅
❅
❅
❅
❅

�
�
�� ❅

❅
❅
❅
❅❅

❅❅

❅❅��

�� ❅❅

⊤

⊥

· · ·

<object>

singleton list

<cons>

<symbol>

<null> mono-list poly-list

sy-list fpi-list

· · ·

Figure 3: Standard and strategic types as part of the type lattice (b)

bounded type variables, dependencies between argument types and result
types can be expressed more precisely. For functions, k designates the arity;
constants are described by schemes with k = 0.

In the lattice shown in Figure 2, zero is extracted from all numerical
subtypes and combined into the singleton type zero. The following generic
type scheme is used for the standard predicate zerop:

zerop

zero → <null>

zero ⊓ <number> → <null>

The first line means that if the function zerop is applied to an argument of
type zero the result will not be (), i.e. the complement type of <null>.
The other descriptor means that if it is applied to an argument of type
<number>, but which is not zero, the result will be () of type <null>.
Separating the two cases enables us to perform control flow inferencing
when zerop is used as the predicate function at a branch. Consider the



10 KIND, FRIEDRICH

defined function foo using the predicate function integerp:

(defun foo (x y)
(if (integerp x)

(if (integerp y)
x

nil)
nil))

Dependencies between argument and result types can be found where type
variables occur inside the inferred generic type scheme.

foo

α<integer> × <integer> → α<integer>

<integer> × <integer> → <null>

<integer> × ⊤ → <null>

The type scheme for integerp is given in the appendix together with those
for some other standard functions.

4. The Inference Routine

The inference routine begins analyzing function bodies by first doing local
inferences, and second doing global inference by reducing locally inferred
function schemes to type schemes that match for all known function calls
of an application. A function has unknown calls if it is either exported or
assigned to a variable (i.e. the function has to be translated into a closure).

During the analyses of function bodies, a type scheme must be available
for every function application. If a called function does not have a type
scheme, the analysis of the function being processed is suspended until a
type scheme for the called function has been inferred.

When processing a function body, the incoming type information con-
cerning argument types and the constraints defined by the type scheme of
the function are unified for each function call in the body. The resulting
type information is passed to later function calls. The incoming type infor-
mation of a function call is called the actual type constraints of the called
function. After unification of actual type constraints and each line of the
formal type scheme, new actual type constraints are available, and these
are used for unification with other function calls.

In general, the incoming type information consists of a set of actual type
constraints, because for every line of the type scheme of the previously



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 11

called function new constraints can arise. The type scheme of each called
function has to be unified with all the actual type constraints, but not all
combinations of actual type constraints and lines of the type scheme can be
unified successfully. That is to say, a function is not necessarily applicable
to all incoming argument and result types. The number of new actual type
constraints depends on the polymorphism of the called function and is at
most the product of the number of actual type constraints and the number
of lines in the type scheme.

Returning to the function foo given in section 3.2, we define a new func-
tion bar to illustrate the steps of unification.

(defun bar (x y)
(let ((u (foo x y))

(v (foo y x)))
(if u v nil)))

The process of local inference starts unifying the initial type constraints
with the generic type scheme of foo to a set of new type constraints.

αx × αy → αu

αx = ⊤

αy = ⊤

αu = ⊤

foo

α
<integer>
1

× <integer> → α
<integer>
1

<integer> × <integer> → <null>

<integer> × ⊤ → <null>

αx × αy → αu

αx = α1

αy = <integer>

αu = α1

α1 = <integer>

αx = <integer>

αy = <integer>

αu = <null>

αx = <integer>

αy = ⊤

αu = <null>

The function foo is applied once again but with arguments exchanged.
The actual type constraints are those refined by the first call.



12 KIND, FRIEDRICH

αy × αx → αv

αx = α1

αy = <integer>

αu = α1

αv = ⊤

α1 = <integer>

αx = <integer>

αy = <integer>

αu = <null>

αv = ⊤

αx = <integer>

αy = ⊤

αu = <null>

αv = ⊤

foo

α
<integer>
2

× <integer> → α
<integer>
2

<integer> × <integer> → <null>

<integer> × ⊤ → <null>

αx × αy → αu

αx = α1

αy = α2

αu = α1

αv = α2

α1 = <integer>

α2 = <integer>

αx × αy → αu

αx = <integer>

αy = <integer>

αu = <null>

αv = <null>

αx = <integer>

αy = <integer>

αu = <null>

αv = <null>

αx = <integer>

αy = <integer>

αu = <null>

αv = <null>

Afterwards, control flow inference selects the type constraints with
αu = <null> to pass into the then-case and those with αu = <null> to
pass into the else-case. The result type can be determined in the then-case
as <null> and in the else-case as the type of αu. The type scheme of bar
can now be given, after all unnecessary variables have been eliminated.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 13

bar

<integer> × α<integer> → α<integer>

<integer> × <integer> → <null>

<integer> × <integer> → <null>

<integer> × <integer> → <null>

The type scheme differentiates between different argument and result
type ranges for bar. The first line reflects that when bar is called with
two integer values, the result value is of the same type as the type of
the second argument. If bar is called with a second argument of type
<fixed-precision-integer> then the result is also of this type, provided
that the first argument is an arbitrary integer value.

5. Monomorphic and Polymorphic Lists

Type information on global variables and structure components has to be
treated carefully, because side effects on these components cannot be de-
tected in general. However, redundant type checks in list operations are
reduced for special kinds of lists. Thus, we distinguish monomorphic lists
(mono-list) and polymorphic lists (poly-list)—see Figure 3. Monomor-
phic lists contain elements with the same type, for example <symbol>,
<number> or <cons>. Figure 3 shows two kinds of monomorphic list types
and their use in type schemes is shown in the appendix. When cons is used
to add an item to a list, a monomorphic list may change to a polymorphic
list if the new item is not of the same class as the rest of the list.

In some cases, type information inferred earlier on compound types may
become invalid, because it is difficult to track all structure updates. To
reduce the side effects that arise from update functions, all monomorphic
lists are given a time stamp. If a function is called which is known to modify
lists, all previously inferred polymorphic lists are subsequently treated as
<cons> types.

Monomorphic numeric list types can be subdivided further into lists con-
taining elements of type <fixed-precision-integer> ⊔ <single-float>
or <fixed-precision-integer> ⊔ <single-float> ⊔ <double-float>.
Generic arithmetic operations can thus be optimized much better, because
they often operate on lists of number lists using coercions to view the lists
as monomorphic.



14 KIND, FRIEDRICH

6. Recursive Functions

During local inference, a type scheme should be available for every function
call, but if there is not, analysis continues with the rest of the body. This
strategy does not work for recursive calls. When a type scheme is needed
for a function that is being analysed, the default type scheme:

⊤ × · · · × ⊤ → ⊤

is used. After finishing all pending local inferences, the functions involved
in the recursion are analysed once again to specialize the type schemes.
In order to achieve a practical type inference system we are able to do
the analysis of recursion without a fixed-point iteration. An analysis with,
for example, the Kaplan/Ullman algorithm, would be very expensive and
would not be acceptable in a practical compiler for large applications.

The inferred generic type scheme of length, a function to compute the
length of arbitrary lists, shows that sharp type schemes can also be inferred
for recursive functions:

length

<null> → fpi-zero

<cons> → <number>

In comparison, the one-line type scheme inferred in ML for an equivalent
function is:

length : ∀α.(list α)→ integer

7. Special Inferences

We deviate from the unification process described so far when certain spe-
cial functions are called and specific inference techniques must be applied:

equality predicates: The equality of values implies the equality of types,
but the knowledge that two values are not equal does not allow any-
thing to be inferred about the types of the values. This fact can not be
expressed in type schemes for the standard equality predicates. Con-
trol flow inferencing is extended when standard equality predicates
(e.g. eq, neq) occur to take advantage of these dependencies.

slot reader/writer: Access to a structure component uses a generic func-
tion, but the combination of the class of the structure and the name
of the accessor identifies the slot concerned. In consequence, the type
of the contents can be determined.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 15

function arguments: In general, function types are not handled, but
standard functions (like apply, funcall, map) are treated specially;
argument and result types can easily be unified because the seman-
tics of these functions are known.

8. Conclusions

A practical approach to type inference has been presented. The approach
is realized in a module and application compiler for EuLisp and is based
on unification over generic type schemes, which extend the expressiveness
of common one-line type schemes. Using generic type schemes and through
the use of a refined type lattice with singleton types we are able to retain
and deduce more information about defined functions and constants.

The module structure of EuLisp aids greatly in improving both the effi-
ciency of the type inferencing, and the detail of the information thus gained,
particularly in the case of unexported functions by global inferencing.

References

1. Baker, H. G. The Nimble type inferencer for Common Lisp-84. (April
1990). Pre-puplication version.

2. Beer, R. D. Preliminary report on a practical type inference system for
Common Lisp. Lisp Pointers, 1, 4 (1987) 5–11.

3. Bretthauer, H., Christaller, Th., Friedrich, H., Goerigk, W., Heicking,
W., Hoffmann, U., Hovekamp, D., Knutzen, H., Kopp, J., Kriegel, E. U.,
Mohr, I., Rosenmüller, R., and Simon, F. Das Verbundvorhaben AP-
PLY: Ein modernes und bedarfsgerechtes Lisp. KI, 2 (June 1992) 50–
54.

4. Harper, R. Introduction to Standard ML. Report ECS-LFCS-86-14,
University of Edinburgh (November 1986). Laboratory for Foundations
of Computer Science.

5. Henglein, F. Global tagging optimization by type inference. In Sym-
posium on Lisp and Functional Programming, ACM (1992) 205–215.

6. Jones, N. D. and Muchnick, S. Binding time optimization in program-
ming languages. In Third Symposium on Principles of Programming
Languages (1976) 77–94.

7. Kaplan, M. A. and Ullman, J. D. A scheme for the automatic inference
of variable types. Journal of the ACM, 27, 1 (January 1980) 128–145.



16 KIND, FRIEDRICH

8. Ma, K.-L. and Kessler, R. R. TICL—A type inference system for Com-
mon Lisp. Software—Practice and Experience, 20, 6 (June 1990) 593–
623.

9. Milner, R. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, , 17 (1978) 348–375.

10. Milner, R. A proposal for standard ML. In ACM Symposium on Lisp
and Functional Programming (1984) 184–197.

11. Padget, J., Nuyens, G., and Bretthauer, H. (eds.). An overview of
EuLisp. (1993). In this issue.

12. Robinson, J. A. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12, 1 (1965) 23–41.

13. Steenkiste, P. and Hennessy, J. Tags and type checking in Lisp: Hard-
ware and software approaches. In Second International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (October 1987).

A. Formal Type Schemes of some Standard Functions

The formal type schemes of integerp, cons, car, cdr and + can be defined
as follows:

integerp

<integer> → <null>

<integer> → <null>

cons

<object> × mono-list⊔ <null> → poly-list

<symbol>⊔ <fpi> × <null> → poly-list

<fpi> × fpi-list → poly-list

<symbol> × sy-list → poly-list

<fpi> × <null> ⊔ fpi-list → fpi-list

<symbol> × <null> ⊔ sy-list → sy-list

We abbreviate the standard type name <fixed-precision-integer> to
<fpi> in the following schemes.



A PRACTICAL APPROACH TO TYPE INFERENCE FOR EULISP 17

car

poly-list → <object>

fpi-list → <fixed-precision-integer>

sy-list → <symbol>

cdr

poly-list → <object>

αmono-list → <null> ⊔ αmono-list

+

poly-list → <number>

fpi-list → <fpi>


